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Реферат. Тяжка черепно-мозкова травма: сучасне уявлення про патофізіологічні механізми пошкодження 
головного мозку (оглядова стаття). Царьов О.В., Жилюк В.І., Лєвих А.Е., Букреєва А.В. В оглядовій статті 
розкрито сучасні уявлення про молекулярні та клітинні механізми пошкодження головного мозку при тяжкий 
черепно-мозковій травмі (ЧМТ). Мета дослідження – проаналізувати патофізіологічні ланки первинного та 
вторинного пошкодження головного мозку при тяжкій ЧМТ для виявлення патогенетично обґрунтованих 
напрямків інтенсивної терапії. Електронний пошук виконано в PubMed і Google Scholar, реферативній базі даних 
наукової літератури Scopus за період 2001-2025 роки. Пошук інформації проводився за ключовими словами: 
«traumatic brain injury», «cerebral metabolism», «excitotoxicity», «neuroinflammation», «metabolic crisis», «intensive 
care». За допомогою бібліографічного та аналітичного методів було відібрано та опрацьовано 1128 джерел, 
серед яких були доказові рандомізовані дослідження, систематичні огляди та інші, відібрано 858 і про-
аналізовано 83 найбільш релевантні джерела. Принциповим є розуміння того факту, що патологічний вплив на 
мозок у момент травми не закінчився, а тільки починається, призводячи до вторинного ушкодження – основної 
точки застосування комплексу інтенсивної терапії при тяжкій ЧМТ, оскільки запобігання та обмеження впливу 
вторинних патологічних факторів здатне суттєво покращити результати лікування тяжкої ЧМТ. Головними 
молекулярно-клітинними ланками патогенезу тяжкої черепно-мозкової травми є розвиток енергодефіциту, 
ексайтотоксичності з перенавантаженням нервових клітин іонами кальцію, гіперпродукції активних форм 
кисню та оксиду азоту, хронічного нейрозапалення, яке активує мікроглія, що призводить до активації сигналів 
клітинної загибелі нервових клітин шляхом некрозу, апоптозу та автофагії. Подана нова концепція розвитку 
метаболічної кризи, яка доповнює наше уявлення про патофізіологічні механізми пошкодження головного мозку 
при тяжкій ЧМТ. Концепція метаболічної кризи, яка відрізняється від розвитку ішемії, по-новому формує наше 
уявлення про вторинне ушкодження головного мозку – основну точку застосування комплексу інтенсивної 
терапії при тяжкій ЧМТ, у якому мітохондрії відіграють центральну роль і виступають одним з головних 
чинників у визначенні смерті або життя клітин головного мозку. Тому розроблення напрямків нейропротекції 
для запобігання та обмеження впливу вторинних патологічних факторів здатне суттєво покращити 
неврологічні результати лікування пацієнтів з тяжкою ЧМТ. 

Abstract. Severe traumatic brain injury: a modern understanding of the pathophysiological mechanisms of brain 
damage. Tsarev A.V., Zhilyuk V.I., Lievykh A.E., Bukreieva A.V. The review article presents modern ideas about 
the molecular and cellular mechanisms of brain damage in severe traumatic brain injury (TBI). The aim of the study is 
to analyze the pathophysiological links of primary and secondary brain damage in severe TBI in order to identify 
pathogenetically justified areas of intensive care. An electronic search was performed in PubMed and Google Scholar, 
the abstract database of scientific literature Scopus for the period 2001-2025. The search for information was carried 
out using the keywords: "traumatic brain injury", "cerebral metabolism", "excitotoxicity", "neuroinflammation", 
"metabolic crisis", "intensive care". Using bibliographic and analytical methods, 1128 sources were selected and 
processed, including evidence-based randomized trials, systematic reviews and others, 858 were selected and 83 of the 
most relevant sources were analyzed. It is fundamental to understand the fact that the pathological effect on the brain at 
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the time of injury has not ended, but only begins, leading to secondary damage – the main point of application of the 
complex of intensive care for severe TBI. Since the prevention and limitation of the influence of secondary pathological 
factors can significantly improve the results of treatment of severe TBI. The main molecular and cellular links in the 
pathogenesis of severe traumatic brain injury are the development of energy deficiency, excitotoxicity with overload of 
nerve cells with calcium ions, hyperproduction of reactive oxygen species and nitric oxide, chronic neuroinflammation 
that activates microglia, which leads to the activation of signals of cellular death of nerve cells through necrosis, 
apoptosis and autophagy. A new concept of the development of metabolic crisis is presented, which complements our 
understanding of the pathophysiological mechanisms of brain damage in severe TBI. The concept of metabolic crisis, 
which differs from the mechanisms of ischemia, reshapes our understanding of secondary brain damage – the main point 
of application of the complex of intensive care for severe TBI. In which mitochondria play a central role and act as one 
of the main factors in determining the death or life of brain cells. Therefore, the development of neuroprotection trends 
for preventing and limiting the impact of secondary pathological factors can significantly improve the neurological 
outcomes of treatment of patients with severe TBI. 

 
Тяжка черепно-мозкова травма (ЧМТ) є 

однією з основних причини смертності в осіб 
молодого віку та тривалої інвалідності. Частота 
ЧМТ становить 1,8-5,4 випадку на 1000 на-
селення. Щороку в США приблизно 500 тис. осіб 
одержують ЧМТ, причому 450 тис. з них 
потрапляють у стаціонар і серед них має місце 
значна втрата працездатності приблизно в 
100 тис. осіб на рік. В Україні постраждалим з 
ЧМТ працездатного віку належить перше місце в 
структурі летальності, що у 2-3 рази перевищує 
аналогічний показник країн Європи. Частота 
ЧМТ в нашій країні в середньому становить 3-4 
на 1000 населення, з найбільшим ураженням 
дітей, осіб молодого та молодшого середнього 
віку, високою летальністю та інвалідизацією 
постраждалих, тяжкими наслідками зі стійкою та 
тимчасовою втратою працездатності, надзви-
чайно тяжкою для сім’ї, суспільства та держави 
загалом, особливо в умовах військового часу [1, 
2]. Тяжка ЧМТ, незалежно від її характеру та 
тяжкості, є патогенетично єдиним процесом, який 
супроводжується порушенням механізмів само-
регуляції метаболічних процесів, що можуть бути 
компенсованими й некомпенсованими, оборот-
ними та незворотними [3]. 

Мета дослідження – проаналізувати пато-
фізіологічні ланки первинного та вторинного 
пошкодження головного мозку при тяжкий ЧМТ 
для виявлення патогенетично обґрунтованих 
напрямків інтенсивної терапії. 

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ 

У дослідженні було проаналізовано сучасні 
дані щодо клітинних та молекулярних механізмів 
пошкодження головного мозку при тяжкій череп-
но-мозковій травмі, на які повинна бути націлена 
інтенсивна терапія з метою більш швидкого та 
якісного відновлення неврологічних функцій. 

Задля досягнення поставленої мети в процесі 
проведення пошукового дослідження були засто-
совані такі методи: системно-структурний, фор-

мально-логічний, бібліографічний і метод нефор-
малізованого (традиційного) аналізу.  

Електронний пошук виконано в PubMed і 
Google Scholar, реферативній базі даних наукової 
літератури Scopus за період 2001-2025 роки. 
Пошук інформації проводився за ключовими 
словами: «traumatic brain injury», «ischemia», 
«cerebral metabolism», «cerebral blood flow», 
«intensive care».  

При опрацюванні інформації в базі даних 
PubMed критерієм включення був дизайн до-
слідження, який охоплював експериментальні та 
клінічні дослідження, метааналіз, огляд, система-
тичний огляд тощо. Пошук за ключовими 
словами проводився серед анотацій та повного 
тексту з відкритим режимом доступу. 

Критеріями виключення були публікації, які 
не відповідали меті цього огляду й не містили 
повноцінної інформації щодо результатів до-
сліджень у закритому доступі, мова публікацій 
(крім англійської та української). 

Методологічне оцінювання кожного до-
слідження здійснювали відповідно до стандартів 
PRISMA (Preferred Reporting Items for Systematic 
reviews and Meta-Analyses), проводили оцінюван-
ня упередженості. Збір даних включав вибір 
дослідження і вилучення даних. 

Попередній відбір індексованих у PubMed та 
Google Scholar джерел дозволив знайти 1128 пуб-
лікацій. Подальший аналіз та ідентифікація 
публікацій за їх назвами дозволила видалити з 
результатів пошуку 1046 публікацій, які не 
відповідали основній меті пошуку. Після система-
тизації відібраної інформації залишилось 83 най-
більш релевантні нашому дослідженню джерела.  

При проведенні цього дослідження врахову-
вались заходи щодо забезпечення безпеки для 
здоров’я людей, дотримання їх прав, людської 
гідності та морально-етичних норм відповідно до 
принципів біоетики, викладених у Гельсінській 
декларації «Етичні принципи медичних до-
сліджень за участю людей», «Загальній декларації 
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про біоетику та права людини (ЮНЕСКО)», 
відповідних законів України. Дослідження схва-
лено комісією з питань біомедичної етики 
Дніпровського державного медичного універ-
ситету (№ 1 від 21.09.2022 р.). 

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ 

Виділяють первинні ушкодження головного 
мозку – результат безпосереднього впливу ме-
ханічної енергії, і вторинні ушкодження, що 
виникають унаслідок складних і різноманітних 
реакцій організму, ініційованих травмою. Прин-
циповим є розуміння того факту, що патологічний 
вплив на мозок у момент травми не закінчився, а 
тільки починається, призводячи до вторинного 
ушкодження – основної точки застосування ком-
плексу інтенсивної терапії при тяжкій ЧМТ, 
оскільки запобігання та обмеження впливу вто-
ринних патологічних факторів здатне суттєво по-
кращити результати лікування тяжкої ЧМТ [4, 5]. 

Вторинні ушкодження формуються за рахунок 
запуску каскаду оксидативного стресу, моди-
фікації кальцієвого гомеостазу, запалення, аксо-
нального ушкодження, підвищення проникності 
гематоенцефалічного бар'єру (ГЕБ), які в кінце-
вому підсумку призводять до розвитку клітинної 
дегенерації, порушення синаптичної трансмісії і 
синаптичної пластичності, активації апоптозу та 
автофагії, які можуть персистувати протягом від 
місяців до років [4, 6, 7, 8]. 

Головний мозок має високий рівень мета-
болізму, використовуючи для підтримки функціо-
нальної активності близько 25% глюкози. Вияв-
лено достовірну залежність між швидкістю 
споживання мозком кисню (CMRO2) та невро-
логічним статусом пацієнтів з тяжкою ЧМТ при 
оцінюванні за шкалою ком Глазго. Так, CMRO2 
знижується приблизно на 50% від норми в 
пацієнтів з тяжкою ЧМТ в коматозному стані. 
Зазначене зниження CMRO2 виникає як у 
вогнищах травматичного ураження, так і у 
віддалених ділянках, які, за даними комп’ютерної 
томографії, виглядають нормальними [5, 7, 9].  

При цьому мозок не має у своєму роз-
порядженні скільки-небудь значного енерге-
тичного пулу, який дозволив би забезпечити хоча 
б тимчасове автономне функціонування в разі 
припинення кровотоку. Це зумовлює виняткову 
гіпоксичну вразливість головного мозку порів-
няно з іншими органами і тканинами [10, 11].  

На відміну від пригнічення окисного мета-
болізму, збільшення використання глюкози в 
головному мозку в гострому періоді тяжкої ЧМТ 
розвивається за рахунок впливу масивного іон-
ного потоку, частково через вивільнення збуд-

ливих амінокислот. Цей іонний дисбаланс 
тимчасово збільшує використання церебральної 
глюкози, яка активує Na+/K+-насоси у спробі 
відновити іонний гомеостаз. Регіональна 
швидкість церебрального метаболізму глюкози 
(CMRG) підвищена в більшості пацієнтів з тяжкою 
ЧМТ, обстежених протягом 1 тижня після 
отримання травми [12, 13]. 

Порушення доставляння кров'ю кисню та 
субстратів неминуче призводить до пошкодження 
мозку. Зниження CMRO2 та CMRG корелювало з 
поганим неврологічним відновленням у пацієнтів 
з тяжкою ЧМТ [14]. 

Як показали дослідження, у перші 24 години з 
моменту отримання тяжкої ЧМТ відзначається 
зниження мозкового кровотоку. Необхідно під-
креслити, що мозковий кровотік визначається 
церебральним перфузійним тиском (ЦПТ), який 
відповідає середньому артеріальному тиску 
(САК): ЦПТ=САТ – внутрішньочерепний тиск 
(ВЧТ). Особливістю кровопостачання мозку є 
існування феномену саморегуляції мозкового 
кровотоку, під яким розуміють механізми, що 
забезпечують сталість церебрального перфузій-
ного тиску при змінах системного артеріального 
тиску (АТ) чи ВЧТ. Таким чином, головний мозок 
у нормі здатен підтримувати своє крово-
постачання відповідно до метаболічних потреб 
незалежно від коливань системного АТ. Так, у 
здорових осіб при коливанні АТ систолічного в 
діапазоні від 60 до 160 мм рт. ст. (або ЦПТ 50-
150 мм рт. ст.) саморегуляція мозкового крово-
току зберігається. При цьому в пацієнтів, які 
страждають на артеріальну гіпертензію, нижня 
межа АТ систолічного, при якому зберігається 
саморегуляція мозкового кровотоку, лежить у 
межах 110-120 мм рт. ст., а верхня межа досягає 
240-280 мм рт. ст. Зниження АТ систолічного на 
30% від вихідного рівня викликає зменшення 
мозкового кровотоку в таких осіб [5, 15]. 

Отже, у неушкодженому мозку рівень моз-
кового кровотоку тісно пов'язаний з метаболіч-
ними потребами. Цей взаємозв'язок порушується 
при тяжкій ЧМТ за рахунок зриву механізму 
авторегуляції та супроводжується значною дис-
пропорцією між мозковим кровотоком та нейро-
нальним метаболізмом. При зниженні ЦПТ нижче 
50 мм рт. ст. мозковий кровотік змінюється пара-
лельно рівню системного АТ, призводячи до 
виснаження резерву мозкового кровотоку, але 
активність церебрального метаболізму про-
довжує підтримуватися за рахунок підвищення 
екстракції кисню тканинами (O2ER). Така невід-
повідність метаболічних потреб тканини рівню 
мозкового кровотоку, яка супроводжується 
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збільшеною O2ER, отримала назву «мізерної» 
перфузії. Навпаки, при коматозних станах різної 
етіології мозковий кровотік може бути вищим за 
його метаболічну потребу, що призводить до 
розвитку так званого синдрому надмірної пер-
фузії. Також необхідно підкреслити, що рівень 
такого показника, як парціальний тиск в арте-
ріальній крові (PaO2), чинить невеликий вплив на 
глобальний мозковий кровотік, доки його рівень 
не знижується <50 мм рт. ст. При досягненні 
зазначеного порогового рівня PaO2 відбувається 
підвищення рівня мозкового кровотоку, що 
компенсує ці зрушення [5, 7, 16, 17].  

Біоенергетична недостатність при тяжкій 
ЧМТ. Мозок надзвичайно чутливий до ішемії через 
його залежність від окисного фосфорилювання для 
виробництва енергії. Астроцити та нейрони, 
основні структурні елементи мозкової тканини, є 
найактивнішими споживачами кисню та глюкози. 
Проте вони демонструють різні переваги щодо 
утилізації глюкози [18]. У той час як астроцити 
споживають більшу частину глюкози і пере-
творюють її на лактат, нейрони роблять міні-
мальний внесок у споживання глюкози в стані 
спокою [19]. Вказана різниця в переважному ви-
користанні субстрату між астроцитами та 
нейронами особливо проявляється при розвитку 
ішемії. Нейрони та астроцити реагують на енерге-
тичний стрес активацією АМР-активованої протеїн-
кінази (АМРК) – ключового енергетичного сенсора 
в більшості евкаріотичних клітин. В астроцитах 
передача сигналів AMPK регулює гліколіз та 
посилює вироблення енергії. Гліколітично утво-
рений аденозинтрифосфат (АТФ) використовується 
для підтримки мембранного потенціалу міто-
хондрій, зумовлюючи підвищення резистентності 
астроцитів до проапоптотичної сигналізації [20]. 
Однак у нейронах підвищена регуляція гліколізу 
визначається рівнем фосфофруктокінази-2 (PFK2). 
Нейрони, на відміну від астроцитів, мають 
фізіологічно низьку активність PFK2, зумовлену 
безперервною деградацією убіквітин-лігазою E3 
APCСdh1, і відповідно – низький рівень гліколізу, 
оскільки нейрони переважно використовують глю-
козу в пентозофосфатному шляху для виробництва 
відновленого глутатіону. В умовах енергетичного 
дефіциту глюкоза перенаправляється на гліколіз для 
виробництва АТФ, що призводить до ослаблення 
антиоксидантного захисту [21].   

Загалом окиснювальний метаболізм головного 
мозку зазвичай залишається помітно пригніченим 
протягом перших двох тижнів після тяжкої ЧМТ, 
причому ступінь депресії корелює з поганими 
довгостроковими неврологічними результатами. 
На противагу цьому, зміни гліколізу та мета-

болізму лактату, ймовірно, мають більш варіа-
бельний часовий перебіг і менш визначений 
вплив на неврологічні відновлення. Експери-
ментальні та клінічні дослідження показали 
існування ранньої посттравматичної активації 
гліколізу – так званого «гіпергліколізу», за яким 
слідує підгостре пригнічення метаболізму глю-
кози. Рання гіпергліколітична фаза, можливо, 
відображає підвищені потреби в енергії для 
усунення іонного дисбалансу внаслідок розвитку 
ексайтотоксичності, вона також була пов'язана із 
судомною активністю після ЧМТ, як в експе-
рименті, так і в клінічних умовах [13]. Подальше 
пригнічення гліколізу внаслідок мітохондріальної 
дисфункції після ЧМТ, на фоні високих потреб в 
енергії, пов’язано з порушенням процесу гліко-
лізу [22]. На клітинному рівні виснаження НАД+, 
високий рівень НАДН та надмірне надходження 
цинку можуть ще більше посилити нестачу АТФ 
і в кінцевому підсумку призвести до енергетич-
ного збою [23, 24, 25]. 

З одного боку, лактат є ключовим посеред-
ником між гліколізом й окиснювальним метабо-
лізмом, водночас він може використовуватися 
мозком у патологічних умовах, відіграючи 
ключову роль у визначенні життєздатності клітин 
і довгострокових неврологічних наслідків після 
ЧМТ. У пацієнтів з тяжкою ЧМТ анаеробний 
гліколіз може призводити до помітного збіль-
шення продукції церебрального лактату. Підви-
щений рівень лактату ліквору й позаклітинного 
лактату, виміряний за допомогою церебрального 
мікродіалізу, зазвичай пояснюється ішемією, яка 
триває [13, 20]. При цьому підвищення рівня 
лактату внаслідок розвитку ішемії призводить до 
виходу лактату з мозку в кров, і його рівень 
виступає маркером церебрального пошкодження. 
Однак з'являється все більше доказів того, що 
поглинання лактату як альтернативного джерела 
енергії також відбувається в пошкодженому 
мозку та інших пошкоджених тканинах. Так, у 
низці досліджень показано, що лактат, утворений 
у результаті астроцитарного гліколізу, може 
транспортуватися до сусідніх нейронів і викорис-
товуватися таким чином [26, 27]. Також було 
продемонстровано, що введення лактату покра-
щує когнітивні функції в експериментальній 
моделі ЧМТ і знижує потребу в нейрональному 
споживанні глюкози [13, 28]. Нарешті, лактат 
може перетворюватися в піруват і, замість того, 
щоб входити в цикл Кребса, діяти як поглинач 
вільних радикалів [29].  

Ексайтотоксичність – це процес, що характе-
ризується підвищеним рівнем нейромедіаторів та 
глутамату в синаптичному просторі, що сти-
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мулюють рецептори N-метил-d-аспартату (NMDA) 
та α-аміно-3-гідрокси-5-метил-4-ізоксазолпропіо-
нової кислоти (AMPA) навколишніх нервових 
клітин [30]. Ці рецептори залишаються активо-
ваними, що сприяє надходженню іонів натрію та 
кальцію у внутрішньоклітинний простір [31]. Це 
призводить до аномально високого рівня вільного 
внутрішньоклітинного та мітохондріального 
кальцію, що зумовлює активацію таких месен-
джерів, як каспази та білки кальпаїну, вивіль-
нення нейромедіаторних везикул, катаболічних 
ферментів як альтернативного джерела енергії 
фосфоліпаз, протеаз та ендопротеаз [32]. 

Глутамат є найважливішим нейромедіатором, 
який бере участь у багатьох процесах, включаючи 
синаптичний зв'язок, клітинний іонний гомеостаз, 
забезпечення довготривалого потенціалу дії та 
гормонального вивільнення [33]. При тяжкій ЧМТ 
позаклітинні концентрації глутамату підвищують-
ся внаслідок клітинного лізису. Пізніший аберант-
ний відтік глутамату з нейронів і глії в кінцевому 
підсумку погіршує ситуацію. Високі концентрації 
глутамату є шкідливими, оскільки вони надмірно 
активують синаптичні NMDA-рецептори та екс-
трасинаптичні глутаматні рецептори [34]. 

Результати досліджень визначили активацію 
NMDA-рецепторів в якості основної причини 
розвитку ексайтотоксичності при тяжкій ЧМТ. 
При цьому активація NMDA-рецепторів передує 
входженню іонів Ca2+ і Na+ у внутрішньоклітин-
ний простір [34, 35]. У подальшому це призводить 
до катаболічних внутрішньоклітинних процесів, 
які включають надмірну продукцію вільних 
радикалів, активацію сигнальних шляхів загибелі 
клітин та активацію медіаторів запалення. У 
сукупності ці події призводять зрештою до 
загибелі клітин. Порівняно з іншими меха-
нізмами, Ca2+-залежний приплив є основним 
фактором, що відповідає за клітинну загибель, 
викликану ексайтоксичністю. Окрім апоптозу та 
некрозу, можуть бути активними також й інші 
форми клітинної смерті, такі як некроптоз, авто-
фагія тощо. Високий рівень внутрішньо-
клітинного Ca2+ та активних форм кисню (АФК) 
підвищує продукцію та вивільнення NO та глу-
тамату. NO може брати участь у реакціях вільно-
радикального окиснення та ліпідній пероксидації 
за рахунок генерації високореактивного перокси-
нітриту. Таким чином, кожен компонент тріади – 
глутамат, вільні радикали і NO потенційно під-
вищує активність іншого [32, 33, 34]. 

Мітохондрії служать дуже ефективними буфе-
рами іонів Ca2+, поглинаючи значну кількість 
цитозольного Ca2+ за рахунок формування потен-
ціалу внутрішньої мембрани, оскільки останній 

виступає рушійною силою для надходження 
цитоплазматичного Ca2+ до мітохондрій. Унаслі-
док поглинання іонів Ca2+ мітохондрії можуть 
переходити в стан перевантаження. Вказане пере-
вантаження Ca2+у мітохондріях може мати різні 
катастрофічні наслідки, серед яких: генерація 
вільних радикалів і АФК, активація протеази, 
фосфоліпази, синтази оксиду азоту (NOS) та 
генерація мітохондріальних пор, через які втра-
чається цитохром С, що сприяє активації каспаз і 
нуклеаз. У підсумку це призводить до загибелі 
клітин [35, 36, 37, 38]. 

Вільнорадикальне пошкодження нейронів. 
Оксидативний стрес є епізодом клітинної заги-
белі, який відбувається невдовзі після ЧМТ і 
проявляється накопиченням як активних форм 
азоту, так і активних форм кисню. Високий рівень 
АФК викликає пошкодження клітин, порушуючи 
цілісність їхніх мембран шляхом перекисного 
окиснення ліпідів, окиснення білків і ДНК та 
пригнічення електронно-транспортного ланцюга в 
мітохондріях. Мембрани нейронів є першою 
мішенню в стресових реакціях, спричинених ЧМТ. 
Через велику кількість поліненасичених жирних 
кислот, включених у мембранні фосфоліпіди, 
низький рівень антиоксидантів, таких як глутатіон, 
глутатіонпероксидаза, вітамін Е, та майже повної 
відсутності каталази мембрани нейронів можуть 
бути багатим джерелом реактивних радикалів та 
сигнальних месенджерів [39, 40, 41].  

Надмірна продукція АФК частково зумовлена 
ексайтотоксичністю, вільним залізом та взаємо-
дією між активними формами кисню. Ексайтоток-
сичність, опосередкована глутаматом, призводить 
до збільшення внутрішньоклітинного рівня Ca2+ та 
подальшої індукції ферментів, таких як синтаза 
оксиду азоту та ксантиноксидаза, що продукують 
вільні радикали. Поглинання іонів Ca2+ мітохон-
дріями може стимулювати вироблення АФК 
шляхом збільшення проникності внутрішньої мем-
брани мітохондрій, вивільнення цитохрому С, 
пригнічення клітинного дихання, вивільнення 
піридинових нуклеотидів та втрати мітохондріаль-
ного глутатіону, необхідного для детоксикації 
пероксидів. Існують синергічні ефекти між міто-
хондріальною мембраною, іонами Ca2+ та АФК в 
опосередкуванні пошкодження клітин після ЧМТ. 
Хоча існують немітохондріальні джерела активних 
форм кисню, мітохондрії є основним внутрішньо-
клітинним джерелом АФК. Але при цьому вони 
також є мішенями оксидативного стресу. Надмірна 
продукція АФК в мітохондріях є однією з най-
більш ранніх подій, що передують порушенню 
потенціалу внутрішньої мембрани мітохондрій, 
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вивільненню проапоптотичних факторів та акти-
вації каспаз (рис.) [42, 43, 44, 45, 46]. 

Оксидативна структурна модифікація, яка 
індукується АФК, може погіршити енергетичний 
метаболізм мітохондрій. Мітохондріальна ДНК 
(мтДНК) найбільш чутлива до оксидативного 
пошкодження, оскільки їй бракує інтронів і вона 

знаходиться близько до джерела АФК. Зниження 
дихальної функції, викликане пошкодженням 
мтДНК, посилює утворення АФК, тим самим 
викликаючи порочне коло пошкодження 
АФК – мтДНК, що зрештою запускає механізм 
апоптозу [47].  

 

 

 
Головні патофізіологічні ланки пошкодження головного мозку при тяжкій ЧМТ [4, 24, 32] 

 
Одним з напрямків фармакологічної нейро-

протекції є використання поглинача вільних ради-
калів, яким є едаравон. Згідно з результатами 
досліджень, едаравон значно зменшував втрату 
нейронів гіпокампу, окиснювальний стрес, про-
никність ГЕБ та неврологічну недостатність після 
відновлення при ЧМТ [48, 49]. 

Іншим напрямком нейропротекторної терапії 
тяжкої ЧМТ є застосування інертного газу аргону. 
Результати досліджень, як in vitro, так і in vivo, 
продемонстрували, що застосування аргону 
забезпечувало зменшення пошкодження мозку 
шляхом покращення нейрокогнітивних функцій, 
гістологічної картини, зниження рівня біомар-
керів пошкодження головного мозку та покра-
щення виживання. Нейропротекторний ефект 
аргону, опосередкований через толл-подібні 

рецептори TLR2 TLR4, запобігає загибелі клітин 
шляхом регуляції як позаклітинної сигнально-
регульованої кінази ERK1/2, так і фосфатидилі-
нозитол-3-кінази (PI-3K)-AKT. Аргон пригнічує 
прозапальні проапоптотичні сигнальні молекули 
(GSK3b, цитохром С, каспаза 3) [50, 51, 52]. 

Нейрозапалення. Гематоенцефалічний бар'єр 
(ГЕБ) є селективним бар'єром, який запобігає 
доступу імунних клітин та запальних факторів між 
ЦНС та кровоносними судинами. Однак 
пошкодження ГЕБ, зумовлене тяжкою ЧМТ, 
порушує цей бар’єр і створює умови для проник-
нення імунологічних медіаторів з подальшою їх 
інфільтрацією в ЦНС, зумовлюючи розвиток ней-
розапалення. Необхідно наголосити, що нейро-
запалення є важливою ланкою патофізіологічних 
змін при тяжкій ЧМТ як при первинному, так при 
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вторинному пошкодження головного мозку. При 
цьому нейрозапалення, з одного боку, виступає як 
пошкоджувальний фактор, а з іншого – як фактор 
забезпечення нейрональної репарації. Так, у гост-
рому періоді тяжкої ЧМТ у вогнищах контузії 
запускаються клітинні ендогенні запальні реакції з 
метою відновлення пошкодженої тканини, однак 
реалізація надмірної продукції прозапальних цито-
кінів стає важливою рушійною силою прогресу-
вання патологічних змін при ЧМТ [53, 54, 55, 56]. 

Виявлено, що гліальні клітини є центральним 
компонентом ініціації хронічного дегенератив-
ного процесу в головному мозку. Так, після ЧМТ 
гліальні клітини швидко активують розвиток 
реактивного гліозу. До цього процесу залучена 
активована мікроглія, яка ініціює та підтримує 
астроцитарну активацію шляхом генерації та 
вивільнення медіаторів запалення, які, у свою 
чергу, діють на навколишню глію та нейрони. При 
цьому астроцити відповідають за інкапсуляцію 
посттравматичних вогнищ пошкодження, таким 
чином частково відокремлюючи пошкоджену 
тканину мозку від здорової, що свідчить про те, 
що мікроглія може бути першою лінією захисту 
після травматичного пошкодження головного 
мозку. Однак, коли мікроглія стає надмірно акти-
вованою, вона може ініціювати нейротоксичні 
ефекти, вивільняючи численні цитотоксичні 
речовини, включаючи прозапальні цитокіни (IL-
1b, TNFa, IFNc) та метаболіти вільнорадикаль-
ного окиснення (оксид азоту, активні форми 
кисню та азоту) [57, 58, 59, 60].  

Загалом нейрозапалення характеризується 
активацією глії, рекрутингом лейкоцитів та під-
вищенням секреції цитокінів та хемокінів. Зазна-
чені прозапальні медіатори не тільки впливають на 
навколишню глію та нейрони, але й додатково 
сприяють міграції периферичних імунних клітин, 
таких як нейтрофіли, макрофаги та лімфоцити, до 
мозку. Активація глії викликає морфологічні та 
функціональні зміни, які можуть спричинити дис-
функцію синаптичних зв'язків, дисбаланс гомео-
стазу нейромедіаторів та потенційну аксональну 
дегенерацію і загибель нейронів [61, 62, 63].  

Активація астроцитів призводить до підви-
щення рівня нейротрофічних факторів, які під-
тримують та захищають від загибелі нейрони. 
Крім того, астроцити відіграють вирішальну роль 
у регуляції позаклітинного рівня глутамату, 
таким чином знижаючи ексайтотоксичність глу-
тамату для нейронів. Тому порушення функціону-
вання астроцитів посилює нейрональну дисфунк-
цію після ЧМТ. Так, трансгенна абляція реак-
тивних астроцитів зумовлює збільшення загибелі 
нейрональних клітин і сприяє погіршенню невро-

логічних результатів після перенесеної ЧМТ [64]. 
Вищезазначене може частково пояснити втрату 
здатності обмежувати приплив запальних клітин 
у ЦНС. Після ЧМТ астроцити оточують місце 
ураження та формують інгібуючий позаклітинний 
матрикс, включаючи хондроїтин, сульфатні про-
теоглікани, що сприяє утворенню гліального 
рубця. Формування цього щільного фізичного та 
хімічного бар'єру пригнічує регенерацію аксонів і 
порушує функціональні зв'язки, необхідні для 
росту та відновлення аксонів. Тобто, з одного 
боку, астроцити забезпечують нейротрофічну 
підтримку та регуляцію росту аксонів у пост-
травматичному періоді, тоді як, з іншого боку, 
тривалий астрогліоз пригнічує регенерацію аксо-
нів та перешкоджає їх функціональному віднов-
ленню. Тому спроба фармакологічного обме-
ження тривалого астрогліозу є потенційною 
важливою стратегією для регенерації аксонів 
після перенесеної ЧМТ [53, 65, 66, 67]. 

На відміну від функції мікроглії, центральною 
функцією олігодендроцитів є продукування мієлі-
нових оболонок, що оточують аксони. Вони 
можуть забезпечувати трофічні функції шляхом 
продукції нейроторофінів: нейротрофічного фак-
тора мозку (BDNF), гліального нейротрофічного 
фактора (GDNF) та інсуліноподібного фактора 
росту-1 (IGF-1). Дисфункція та загибель оліго-
дендроцитів при тяжкій ЧМТ спричиняє демієлі-
нізацію, яка призводить до порушення аксональ-
ної провідності та, зрештою, до загибелі аксонів, 
що відстрочено може призвести до порушення 
пам’яті в посттравматичному періоді [68]. 

Нейрозапалення є важливим вторинним меха-
нізмом травми, який сприяє постійній нейро-
дегенерації та неврологічним порушенням, пов'я-
заним з черепно-мозковою травмою. Хронічна 
активація мікроглії вважається найбільш руйнів-
ною реакцією мікроглії на травму. Молекулярні 
патерни, асоційовані з пошкодженням (DAMP), 
які зумовлюють неінфекційну запальну відповідь, 
вивільняються пошкодженими нейронами після 
ЧМТ і взаємодіють з толл-подібними рецеп-
торами (TLR) та іншими рецепторами розпізна-
вання патернів (PRR) на активованій мікроглії, 
таким чином запускаючи порочний самопід-
тримуваний цикл руйнівних подій, що призводять 
до тривалої та порушеної активації мікроглії і 
стимулюють нейрозапалення та нейродегене-
рацію. Дослідження на людях та тваринах пока-
зують, що мікроглія хронічно активується про-
тягом тижнів, місяців і навіть років після 
перенесеної ЧМТ і може сприяти хронічній 
нейродегенерації та пов'язаного з нею розвитку 
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неврологічного дефіциту або ризику розвитку 
хвороби Паркінсона [69, 70].  

Зростає усвідомлення зв'язку між перенесеною 
черепно-мозковою травмою та розвитком хво-
роби Альцгеймера в подальшому житті. Цей 
зв'язок підтверджується виявленням гострих та 
хронічних патологій, подібних до хвороби 
Альцгеймера, у мозку пацієнтів з ЧМТ та в екс-
периментальних моделях травми мозку у тварин. 
Так, амілоїдні бляшки (Aβ), які є характерною 
ознакою хвороби Альцгеймера, можуть бути 
виявлені в пацієнтів з ЧМТ протягом кількох годин 
після травми, оскільки хронічне нейрозапалення є 
поширеною нейропатологічною ознакою як ЧМТ, 
так і хвороби Альцгеймера, в основі якого лежить 
хронічна активація мікроглії [71, 72]. 

Метаболічна криза. ЧМТ призводить до 
первинної загибелі нейронів у фокальній ділянці 
мозку, що безпосередньо постраждала від травми, 
водночас зумовлюючи стан метаболічної дис-
функції у віддалених від вогнища пошкодження 
ділянках головного мозку. На першій стадії 
метаболічна дисфункція при ЧМТ характе-
ризується зниженням швидкості споживання 
кисню головним мозком та розвитком гіперглі-
колізу. Як зазначалося вище, гіпергліколіз є 
компенсаторною реакцією, спрямованою на 
відновлення порушених іонних градієнтів у 
головному мозку. Однак стадія гіпергліколізу 
короткочасна, і за нею швидко наступає зниження 
утилізації глюкози. Зрештою, це призводить до 
розвитку стадії ішемії, тобто зниження церебраль-
ного окисного метаболізму внаслідок нестачі 
кисню та глюкози [73]. 

У раніше проведених дослідженнях демон-
стрували розвиток ішемії головного мозку на 
ранніх стадіях тяжкої ЧМТ в більшості пацієнтів, 
проте поширеність ішемії в перші 24 години з 
моменту травми було складно зареєструвати. 
Vespa P. et al. у дослідженні, опублікованому у 
2005 р., з використанням позитронно-емісійної 
томографії та мікродіалізу головного мозку 
виявили, що частота посттравматичної регіонар-
ної та глобальної ішемії була низькою. Але при 
цьому була виявлена пролонгована неішемічна 
метаболічна дисфункція – т. зв. метаболічна 
криза. Метаболічна криза – це зниження рівня 
позаклітинного пірувату при нормальному або 
підвищеному рівні кисню в тканинах, іноді на тлі 
високого рівня позаклітинного глутамату й 
низького рівня глюкози за рахунок розвитку 
мітохондріальної дисфункції та/або надмірного 
збільшення метаболічних потреб, наприклад, за 
рахунок розвитку внутрішньочерепної гіпертен-
зії, гіпертермії або судом [74]. Ця картина може 

здатися дуже схожою на картину ішемії, проте 
основні механізми суттєво відрізняються. 

Існує неповна обізнаність про точні механізми, 
які лежать в основі розвитку метаболічної кризи. 
А втім, були запропоновані дві основні гіпотези 
механізмів її розвитку: дисфункція мітохондрій та 
надмірне підвищення метаболічних потреб. Було 
продемонстровано, що в деяких пацієнтів з ЧМТ 
спостерігаються порушення окисного метабо-
лізму через мітохондріальну дисфункцію, незва-
жаючи на гарне постачання кисню [75, 76, 77, 78]. 
Однак, згідно з експериментальними досліджен-
нями, мітохондріальна дисфункція, яка була 
викликана отруєнням ціанідом, зумовила під-
вищення співвідношення лактат/піруват та рівня 
кисню в тканині мозку (PtiO2) і не була пов’язана 
зі зниженням рівня позаклітинного пірувату [79]. 
Таким чином, мітохондріальна дисфункція сама 
по собі може бути механізмом метаболічної 
кризи, однак вона не зумовлює зниження рівня 
позаклітинного пірувату.  

Надмірне збільшення метаболічних потреб є 
іншим запропонованим механізмом, що веде до 
метаболічної кризи. Нейрональний та астро-
цитарний гіпергліколіз може бути недостатнім 
для компенсації дефіциту окисного метаболізму. 
Крім того, при виснаженні запасів астроци-
тарного глікогену розвиток енергетичної не-
достатності може модифікувати активність 
Na+/K+-АТФ-ази і призвести до внутрішньо-
клітинного накопичення іонів Na+, подальшого 
астроцитарного і мітохондріального набряку. У 
відповідь на розвиток набряку об’єм-регульовані 
аніонні канали астроцитів можуть відкриватися і 
зумовлювати відтік глутамату та інших аміно-
кислот у процесі осморегуляції. Також може 
виникнути реверс астроцитарних транспортерів 
глутамату, що може зумовити ексайтотоксичну 
активацію NMDA-рецепторів та перевантаження 
мітохондрій кальцієм, що призводить до різкої 
деполяризації мітохондрій та клітинної смерті 
внаслідок апоптозу та/або некрозу [80, 81, 82]. 

Важко визначити, що саме дисфункція міто-
хондрій або надмірний енергетичний попит є 
першопричиною метаболічної кризи, але можна 
припустити, що мітохондріальна дисфункція 
посилює надмірний енергетичний попит, а дефі-
цит енергії змінює функцію мітохондрій. У цьому 
полягає порочне коло метаболічної кризи. 

Виникнення метаболічної кризи пов'язане з 
несприятливим результатом після ЧМТ, тому 
важливо виявляти пацієнтів з метаболічною 
кризою для оптимізації їх лікування [83].  

Підсумовуючи, треба підкреслити, що багато-
факторність механізмів вторинного пошкодження 
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головного мозку при тяжкій ЧМТ зумовлює 
складність розробки оптимальної лікувальної стра-
тегії захисту головного мозку. Однак при цьому ці 
патофізіологічні механізми пов’язані між собою, 
формуючи єдиний молекулярно-клітинний каскад 
нейронального пошкодження, який має свою 
послідовність у часі і призводить до раннього та 
відстроченого неврологічного дефіциту. Тому 
інтенсивна терапія повинна фокусуватися на 
ранньому запобіганні та обмеженні впливу факто-
рів, які запускають та підтримують каскад вторин-
ного пошкодження головного мозку. 

ВИСНОВКИ 

1. Для тяжкої черепно-мозкової травми харак-
терним є розвиток короткочасного посттравма-
тичного гіпергліколізу, який відображає підви-
щення потреби в енергії для усунення іонного 
дисбалансу, за яким слідує пригнічення нейро-
нального метаболізму глюкози. Підвищення рівня 
лактату внаслідок розвитку ішемії виступає мар-
кером церебрального пошкодження, але при цьому 
в пошкодженому мозку відбувається поглинання 
лактату як альтернативного джерела енергії.  

2. Активація рецепторів N-метил-d-аспартату є 
основною причиною розвитку ексайтотоксич-
ності при тяжкій черепно-мозковій травмі, яка 
передує перенавантаженню кальцієм і входжен-
ню іонів натрію у внутрішньоклітинні простори, 
що призводить до надмірної продукції вільних 
радикалів, активації сигнальних шляхів загибелі 
клітин та медіаторів запалення. Високий рівень 
активних форм кисню викликає пошкодження 
клітин шляхом перекисного окиснення ліпідів, 
окиснення білків і ДНК та пригнічення електрон-
но-транспортного ланцюга в мітохондріях. 

3. Пошкодження гематоенцефалічного бар’єру 
при тяжкій черепно-мозковій травмі створює 
умови для проникнення імунологічних медіаторів 
з подальшою їх інфільтрацією в центральну 
нервову систему, зумовлюючи розвиток нейроза-

палення, яке, з одного боку, виступає як фактор 
ушкодження, а з іншого – як фактор нейрональної 
репарації. При цьому надмірна продукція про-
запальних цитокінів стає важливою рушійною 
силою прогресування патологічних змін при 
черепно-мозковій травмі, зумовлюючи розвиток 
хронічного нейрозапалення та нейродегенерації 
як у ранньому, так й у віддаленому періоді.  

4. Концепція метаболічної кризи по-новому 
формує наше уявлення про вторинне ушкодження 
головного мозку – основну точку застосування 
комплексу інтенсивної терапії при тяжкій череп-
но-мозковій травмі, у якому мітохондрії віді-
грають центральну роль і виступають одним з 
головних чинників у визначенні смерті або життя 
клітин головного мозку. Тому запобігання та 
обмеження впливу вторинних патологічних 
факторів здатне суттєво покращити неврологічні 
результати лікування пацієнтів з тяжкою черепно-
мозкової травмою. 
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