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Abstract. COVID-19 Pandemic: a novel theoretical approach to epidemics. Saglam Ugur. The coronavirus pan-
demic 2019 (COVID-19) has completed numerous global spreading waves. Several models categorized as compart-
mental, growth, and distributional have been derived and are intended to determine the spread dynamics of the pandemic
and behavioral patterns. However, it seems that a more generalized theoretical approach to this phenomenon can be
derived via distributional models, especially the Gaussian distribution. For this reason, we aim to approach the problem
as a stochastic phenomenon, considering that the spread and the related outcomes of the epidemic occur randomly and
exhibit stochastic behavior. In this way, we can predict the course of the pandemic by detecting the spreading wave
patterns using stochastic instruments and methods. The purpose of our study is to present a phenomenological model that
helps us understand the general outbreak behaviors that determine the characteristic parameters of the pandemic and
behavioral patterns in spreading waves. To achieve the goal, we have developed a theoretical approach that obtains a
stochastic differential equation or a master equation called the Fokker-Planck equation by starting with a stochastic
difference equation or a random walk model. Thus, as a solution to this master equation, we get a time-dependent
Gaussian distribution with a shifted center, which is a good instrument to determine the characteristic spreading
parameters of COVID-19 and the general behavior patterns for all pandemic diseases. The model uncovers thoughts on
preventative mechanisms and sheds light on most criticisms about the importance of individual isolation, recovery
treatments, remedies, and vaccine development.

Pedepat. Ilangemis COVID-19: HoBmii Teopernynuii miaxin o emigemiii. Cariaam Yryp. [lanoemin koponagipycy
2019 poxy (COVID-19) 3agepwiuna uucnenui enodanvui xeuni nowiupenns. byno pospobneno Oekinvka modenetl, sKi
Hanexcams 00 Kamezopili KOMNAPMMeEHMANbHUX, MOOelell 3pOCMANHA Ma PO3NOOLTbYUX, AKI NPUSHAYEH] 0I5 BUSHAYEeHHS
OUHAMIKU NOUWUPeHHS naHOemii ma noeedinkosux mooeneu. OOHax, Mabymo, 3a2anbHiUL meopemuyHull nioxio 0o
Yb02o AGUWA MOJICE OYMU OMPUMAHULL 3a O0NOMO20I0 PO3NOOLILYUX MOOeell, 0COONUBO 2ayCIBCbKO20 po3nodiny. 3 yiel
NPUYUHU MU BPASHEMO RIOIUMU 00 NpoobiemMu K 00 CIMOXACMUYHO20 A8UWYA, 6PAXOBVIOUU, WO NOUUPEHHS MA NO6'S3aHI
3 HUM pe3yTomamu enioemii 8i06y8aiomvcsi 6UNAOK0B0 U OEMOHCIMPYIONb CIMOXACMUYHY NO8eIHKY. Takum duHom, mu
ModcemMo nepedbauumu nepebdic namoemii, SUAGIAIOYU MOOeNi NOWUPEHHS X8Ulb 3d O0ONOMO20K CHOXACMUYHUX
iHcmpymenmie ma memooie. Mema Hawi02o 00CAIONHCEHHs — CMEOPUMU (PEHOMEHOL02TUHY MOOEb, WO OOROMOICE HAM
3PO3yMIMU 3a2a1bHy NOBEOIHKY CRANIAXIE, AKA BU3HAYAE XAPAKMEPHI Napamempu RAHOeMii i N08ediHK0GI MOOeIi Y XEUILAX,
wo nowupromeca. s 00csacHeHHA yiei memu Mu po3poounu meopemudHutl nioxio, wjo 0036015€ OMPUMANU
cmoxacmuuHe ougepenyianvhe piensanns (pisuanna Qokkepa-Ilanka), 6uxo0sauu 3i CMOXACMUYHO20 PISHULEB020 PiG-
HAHHA a00 mooeni 6unaoko8ozo OyKauHs. TaKkum YUHOM, K PO36'I3aHHS Yb020 PIGHAHHA MU OMPUMYEMO 2y CIBCHLKULL
PO3N00iN, WO 3anexHcUums 8i0 4acy, 3i IMIWEeHUM YeHMPOM, AKUU € XOPOUUM THCMPYMEHMOM Ol GUSHAYEHHS XapaK-
mepHuux napamempis nowupenns COVID-19 i 3azanvhux 3aKoHOMIpHOCMEU NOBEJIHKU 8CiX NAHOEMIUHUX 3AX80PI0BAHD.
Mooenv poskpusae idei npo NpegeHMUBHi MeXaHiZMu Mma GUCEIMIIOE OINbWICIb KPUMUYHUX 3AYBAHNCEHb U000
8axcaUBOCMI IHOUGIOYANLHOTL i30/5Yil, 6I0HOBHO20 NIIKYEAHHS, 3A4CO0I8 NPABOBO20 3AXUCHY MA PO3POONEHHS 6AKYUH.

In mid-December 2019, the huge threat to public and started spreading worldwide. The disease is
health, COVID-19, first emerged in Wuhan, China, claimed to live along with ongoing confirmed and
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suspected cases. Many alternative treatments or vac-
cines for the disease have been developed thus far.
High and low-risk groups have been determined and
enforced severe strategic prohibitions to restrain the
disease spread rate [1, 2]. Until a significant regression
in the pandemic is developed, the spreading behavior
of COVID-19 has to be determined to minimize deaths
and potential cases. The course of cases could have
been foreseen through a disease model that must
estimate the future situation and verify the current
situation. Therefore, many modeling studies have been
developed in the early and late eras of the pandemic.
Several classifications such as mechanistic, com-
partmental, phenomenological, deterministic, and

stochastic have been generated for the mathematical
epidemics models in the literature [3, 4]. However, we
can propose a new relatively simple branching
hierarchy from a different viewpoint for epidemic
research methodologies. This branching hierarchy, as
seen in Fig. 1 comprises categories such as compart-
mental models (CM), growth models (GM), and
distributional models (DM), and models such as the
Suspected-Infected-Recovered (SIR) model and its
modified variations (mSIR) [5], Logistic Growth
Model (LGM), Richard Growth Model (RGM),
Generalized Growth Model (GGM), Gaussian Mixture
Model (GMM), and Gaussian Noise Model (GNM).

Categories

Models 2l

EM
| I ]
c™M GM DM
| e
LGM GMM
mSIR GGM GNM

Fig. 1. Branching hierarchy of epidemic modeling over categories and corresponding models

The modeling studies conducted on CM, GM, and
DM-type categories can be represented through a ho-
listic approach that is usable for interpreting the beha-
vioral patterns of pandemics. This holistic approach
can be developed and characterized via the Gaussian
Distribution (GD) model parameters, which can be
assumed as a phenomenological and stochastic asses-

sment of mathematical epidemic modeling studies.
Thus, the categories of CM and GM can be grouped
into the relevant Gaussian-type behavioral patterns
such as truncated-complete-cumulative distributions
as seen in Fig. 2. These relevant behavioral groups can
be determined via mutual or independent variables and
their known or predefined behavioral patterns.
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Fig. 2. The relation scheme among CM and GM with GD
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For the most general purposes, we can mention
that epidemics can be categorized into two main
research methodologies: the mutual behavior pattern
of relevant disease variables or compartments, or the
independent characteristic parameters of each va-
riable or compartment. For this purpose, many
models and their variations have been derived and
applied to epidemics to determine the spreading
dynamics that can be expressed over some disease
variables and characteristic parameters. Spreading
variables have been defined in many models as the
SIR model or LGM and some variations [6, 7, 8, 9,
10]. Still, no modeling study has been mentioned on
the independent characteristic parameters of spread
dynamics. To determine the characteristic parame-
ters, we can consider each variable independently and
develop a theoretical approach for the predefined
spreading characteristics of the variables.

Current studies mostly use the LGM or SIR model
and its variations to interpret the cumulative behavior
of variables or the predefined mutual compartmental
variables, respectively, only over time. Although time
is a variable of spread dynamics, different disease
parameters should also exist to determine the sprea-
ding behavior and correlated processes. Certain
characteristic parameters should be revealed to un-

Truncated Cumulative

Complete

nmax p(n’t)

derstand the spread dynamics of each predefined
variable independently and improve some consistent
and proper responses to the disease course.

The current models are developed on only the
cumulative behavior of some variables as seen in
LGM or the behavior of the mutual variables or
compartments as seen in SIR and their respective
related models. However, we can independently
interpret the spreading process over the variables to
determine characteristic parameters instead of doing
so as in the current models. When the current models
and real data are carefully examined, three types of
general behavior can be assumed to exhibit a
truncated, complete, or cumulative distribution as
seen in Fig. 3 that is expected from the whole natural
consecutive processes, and they can be considered to
have Gaussian-like behavior that may also be heavy-
or long-tailed distribution in the stretched form to
interpret nonlinear stochastic processes. Therefore,
the pandemic phenomenon can be assumed to be a
linear stochastic process, and the characteristics of
disease dynamics can be defined over the parameters
of the classical form of the Gaussian distribution.
From this viewpoint, we ask to develop a theoretical
approach to determine the disease dynamics as a
random process using stochastic instruments.

Cumulative

r]max p(n’t)

Fig. 3. The relevant Gaussian-like distribution plots of SIR and LG Models

Stochastic modeling studies have many appli-
cations in science, such as biology [11], ecology [12],
neuroscience [13], physics [14, 15], signal proces-
sing, information theory, cryptography, and telecom-
munication. A random behavior can be defined as a
stochastic process via some stochastic differential
equations. The spreading of a disease among people
is a stochastic process referred to as a randomly
changing system [16, 17]. This random system can be
assumed to be a continuous-time Markovian process
derived mostly from random walk approximations
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that exhibit memoryless and well-behaved patterns.
Besides, the spreading behavior has a transmission
gradient from infected to healthy among people.
Therefore, it is concluded that this random process
also has an external bias.

In light of the behavioral, methodological, and
mathematical analysis above, it can be concluded that a
more comprehensive and basic theoretical approach can
be derived to determine the characteristics and
spreading patterns of pandemics. The purpose of our
study is to present a phenomenological model through a
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novel theoretical foundation to get a generalized
perception of the spreading dynamics and patterns
of outbreaks.

MATERIALS AND METHODS OF RESEARCH

A model for each compartmental variable beha-
vior independently can be derived among the mu-
tually changing disease variables, such as suspected,
infected, exposed, recovered, and death. Although
many models examine the mutual behavior of
variables over time, no model analyzes the behavior
of each variable independently and tries to find
characteristic disease parameters. Thus, we study to
explore the independent behaviors of each variable in
the current models to find some characteristic para-
meters for the disease dynamics.

Each compartment variable exhibits a complete,
truncated, or cumulative distribution. Thus, we can
use a confirmed method with variables with Gaussian
behavior results to determine some characteristic
disease parameters. On the other hand, natural phe-
nomena have intrinsic random processes with va-
riables with normal distributions and variations, which
can also be defined via the instruments of stochastic
dynamics. We can apply stochastic dynamics to
construct a stochastic disease model and determine the
characteristic parameters for each variable.

We evaluate a stochastic model of the disease's
spread mechanism by assuming a time-dependent

death probability behavior. In this process, the num-
ber of deaths tends to fluctuate due to disease dyna-
mics such as susceptible, exposed, infected, reco-
vered, quarantined, and isolated individuals. The
disease dynamics vary as the number of deaths
gradually decreases via isolated and recovered indi-
viduals and increases via susceptible and exposed
individuals. Thus, the model is developed to estimate
the fluctuation of deaths according to time through
the disease mentioned above dynamics.

The spread from infectious to healthy people and
from sickening to dying can be considered a total
stochastic process. We can model this stochastic
behavior as a random walk process to determine the
epidemic dynamics and the parameters that affect the
stage of the disease. Therefore, the spreading patterns
can be assumed as a stochastic process, and a biased
random walk model is developed via stochastic
instruments and approaches.

We consider the fluctuation in the number of
deaths behavior a stochastic process resulting from
disease spread. Thus, we can determine the spreading
parameters to show that n is the number of deaths
based on the epidemic, t is the time, An and At are the
changes in the number of deaths and time, r and d are
the probability of rising and decreasing in the number
respectively. Hence, we have the equation:

p(nt+At) =pn—An,tO)r+pn+An,t)d + p(n,t)(1 —d — 1)

We can express the equation as a series expansion that gives the differential equation,

dp  (An)edp N 8(An)? a%p

at At an

— + 0((At)?, (An)3)

2(At) an?

We can neglect the higher-order terms and redefine the coefficients in the limit state.

An

= lim e—,
K (An),(AH-0 At

(An)?
24t

{= lim
(An),(At)—0

Here p and C are bias and diffusion coefficients, respectively. We get a stochastic differential equation
called the master equation, the special case of the Fokker-Planck equation [18].

2

ad ad
ap(n. t) = —M%P(n. v+ (WP("' t)

In this case, the spread can be considered locally steady in time. The solution of the Fokker-Planck equation
gives the probability density function (PDF), which is the Gaussian distribution with a shifted center.

1
p(n,t) = \/Taex

(n — put)*
"(‘ 4t )

The mean and mean squared values are as below.

(n) = ut,(n?) = p?t* + 24t
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We obtain the shifted distribution with three
characteristic parameters that define the spreading
wave behavior in detail.

Here, the characteristic parameters of GD are
expressed as that p is the mean number of deaths per
day, t defines the elapsed time through a spreading

wave, and ( takes value depending on the pre-
ventative mechanisms as seen in Figure 4. Pandemic
behavioral patterns can be simulated via the cha-
racteristic parameters of the GD model and
this approach makes the spread dynamics more
clearly understood.

The elapsed time through a

— Time

spreading wave

The mean number of deaths

Bias

GD

per day

The value depending on the

.  Diffusion

preventative mechanisms

Fig. 4. The characteristic parameters of spreading waves in GD model

We have concluded that a stochastic model helps
us understand the outbreak behavior and simplify it to
determine disease dynamics. The new model is a
biased random walk model, a master equation called
the Fokker-Planck equation, and the resultant beha-
vior is a time-dependent Gaussian distribution. Time-
dependent Gaussian behavior is a good instrument for
explaining the characteristics of spreading waves,
guessing the number of deaths, and indicating the
importance of preventative mechanisms.

RESULTS AND DISCUSSION

We have developed a phenomenological approach
to the problem of the COVID-19 pandemic via
stochastic dynamics by assuming that the process
exhibits a Markovian randomly changing behavior.
All epidemics exhibit the same stochastic behavior

and can be modeled as a random process to determine
the spread mechanism dynamics. For the present
pandemic, three parameters are obtained to clarify the
spread dynamics and are sufficient to demonstrate the
graphical results that coincide with the current
experimental data.

Certain relations exist among the parameters,
distribution patterns, and means, and can be
summarized through that table in Figure 5. The
spreading parameters have exact effects on the
distribution patterns through shifting peaks or
changes in mean and the wave's width or fluctuation.
The time shifts the peak and changes the width; the
bias affects only the peak, while the diffusion impacts
only the width of the distribution wave. Thus, the time
and the bias affect the mean, while diffusion does not.

Changes in distribution pattern
Peak(Mean) Width(Deviation)

o |t M M

2

ClEJ U V1

=

a

e V1
Change Not Change
Expectation of distribution

Fig. 5. The relational table among the spreading parameters, distribution wave patterns, and means

264

Ha ymoeax niyensii CC BY 4.0



MEJINYHI IIEPCIIEKTUBU / MEDICNI PERSPEKTIVI

Figure 6 monitors two spreading waves at different
times, biases, and diffusion values. The spreading
parameters have behavioral effects on the wave, such as
shifting the peak of the distribution, changing the width
of the wave, and fluctuating the probability. The elapsed
time through spreading shifts the peak directly and
affects the width of the waves. Thus, an increase in time
exhibits a wide and outnumbered shifted distribution.
The different bias values cause variation in the mean but
do not affect other wave characteristics. The different
diffusion values affect the width of the spreading wave
but do not change the mean.

Since mid-2019, many phenomenological appro-
aches have been evaluated to model the spread of the

p(n.t)

p(n.t)

disease and estimate the probable outcomes as exposed,
infected, recovered, or dead individuals. There are many
commonly used deterministic mathematical models
such as SIR, SEIR, SEIRD, LGM, RGM, and GGM in
the recent literature about the COVID-19 pandemic. In
some papers, it is mentioned that though stochastic
models are more realistic and mostly provide proper
prediction results, they are much more complicated to
analyze and sometimes difficult to determine the
fundamental dynamics of the process. Even so, we have
developed a theoretical approach using stochastic
dynamics to understand and interpret the variables of the
pandemic spread phenomenon.

p(n’t)

Fig. 6. Spreading wave patterns plotted in different time, bias, and diffusion

This paper provides a novel approach to model the
pandemic from an alternative viewpoint to the current
deterministic epidemic models and a simplified type of
master equation: the time evolution of the probability
density function (PDF) derived from the master
equation. It has also verified the random nature of the
spreading process via the stochastic model and esti-
mated the behavioral patterns of the pandemic con-
sistent with the current public data. We have rep-

25/Tom XXX/3

resented the process over three basic parameters,
monitored the independent effects of the parameters on
different spreading waves, and interpreted most of the
criticism about the preventative mechanisms.

CONCLUSIONS

1. Most criticism reveals the distribution behavior
such as the importance of individual isolation, treat-
ments, remedies, or vaccine development. The first
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shifted distribution peak rises with the first spreading
wave but the other peaks occur in time due to disease
dynamics. The bias denoted as u is the transmission
parameter that depends on the gradient between
infectious and healthy people. Earlier, the bias gets
the biggest value, then decreases gradually to the
equilibrium condition. Diffusion, denoted as (, de-
pends on the spreading preventative mechanisms
such as isolation, social distancing, public hygiene
measures, etc. The diffusion takes lower values de-
pending on how the spread preventative mechanisms
are enforced strictly.

2. The bias coefficient takes different values due
to the transmission gradient between infectious and
healthy people. The bias gradually decreases until all
healthy people struggle with the disease. Thus, the
diffusion coefficient related to the preventative
mechanisms only protects people from the wide-
spreading waves that have the additional probability
of increasing deaths. The diffusion coefficient only
reduces the number of deaths in one spreading wave
but does not change the mean. A remedy, vaccine, or
treatment has to be developed to save more people

from such a disease. Preventive measures must be
strictly enforced to protect people from the higher-
order spreading waves until remedial research gives
successful results.

3. This model presents an alternative pheno-
menological approach to estimate the spreading beha-
viors of pandemic outbreaks by explaining disease
dynamics via the spreading parameters p, , and t.
Simplifying outbreaks over a master equation and a
Gaussian distribution provides some advantages in
understanding and determining disease dynamics and
behavioral patterns. Therefore, we can perceive the
critical importance of prohibition and restrictions or
vaccine and remedy development works better.
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